Inferring causal networks from observations and interventions

نویسندگان

  • Mark Steyvers
  • Joshua B. Tenenbaum
  • Eric-Jan Wagenmakers
  • Ben Blum
چکیده

Information about the structure of a causal system can come in the form of observational data— random samples of the system’s autonomous behavior—or interventional data—samples conditioned on the particular values of one or more variables that have been experimentally manipulated. Here we study people’s ability to infer causal structure from both observation and intervention, and to choose informative interventions on the basis of observational data. In three causal inference tasks, participants were to some degree capable of distinguishing between competing causal hypotheses on the basis of purely observational data. Performance improved substantially when participants were allowed to observe the effects of interventions that they performed on the systems. We develop computational models of how people infer causal structure from data and how they plan intervention experiments, based on the representational framework of causal graphical models and the inferential principles of optimal Bayesian decision-making and maximizing expected information gain. These analyses suggest that people can make rational causal inferences, subject to psychologically reasonable representational assumptions and computationally reasonable processing constraints. © 2003 Cognitive Science Society, Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Possibilistic Causal Networks for Handling Interventions: A New Propagation Algorithm

This paper contains two important contributions for the development of possibilistic causal networks. The first one concerns the representation of interventions in possibilistic networks. We provide the counterpart of the ”DO” operator, recently introduced by Pearl, in possibility theory framework. We then show that interventions can equivalently be represented in different ways in possibilisti...

متن کامل

Prediction of user's trustworthiness in web-based social networks via text mining

In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...

متن کامل

Inferring Hidden Causes

One of the important aspects of human causal reasoning is that from the time we are young children we reason about unobserved causes. How can we learn about unobserved causes from information about observed events? Causal Bayes nets provide a formal account of how causal structure is learned from a combination of associations and interventions. This formalism makes specific predictions about th...

متن کامل

Causal Inference in Biology Networks with Integrated Belief Propagation

Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models th...

متن کامل

Identification and Causal Order

This paper looks at one important part of econometric methodology: identification. Put generally, relations that hold among observable and unobservable entities are identifiable if given some a priori knowledge about the relations, previously unknown characteristics of those relations can be deduced from observations. Typically in the econometrics literature, the identification problem is prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cognitive Science

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2003